Cytotoxic Polyacetylenic Alcohols from the Marine Sponge Petrosia Species

Young J a Lim, ${ }^{\dagger}$ Chong-O. Lee, ${ }^{\ddagger}$ J ongki H ong, ${ }^{\S}$ Dong-kyoo Kim, ${ }^{\perp}$ Kwang Sik Im, ${ }^{\dagger}$ and J ee H.J ung*,†
College of Pharmacy, Pusan National University, Pusan 609-735, Korea, K orea Research Institute of Chemical Technol ogy, Taejon, Korea, K orea Basic Science Institute, Taejon, Korea, and Department of Chemistry, Inje University, Kimhae, Korea Received May 23, 2001

New polyacetylenic alcohols (1-5) have been isolated as cytotoxic principles from the marine sponge Petrosia sp. The compounds were particularly cytotoxic against a human melanoma cell line (SK-MEL2). The gross structures were establ ished on the basis of NMR and MS data, and the absolute configuration was determined by the modified M osher's method.

Biologically active polyacetylenes characterized by unbranched long alkyl chains have frequently been isolated from the marine sponges of the genus Petrosia. ${ }^{1-6}$ In earlier papers, we reported new $\mathrm{C}_{30}, \mathrm{C}_{45}, \mathrm{C}_{46}$, and C_{47} polyacetylenic alcohols which displayed significant cytotoxicities against five human tumor cell lines. ${ }^{7-9}$ In our continuing search for bioactive metabolites from the same sponge, new $\mathrm{C}_{46}, \mathrm{C}_{47}$, and C_{48} polyacetylenic alcohols (1-5) have been isolated. The structure elucidation of $\mathbf{1 - 5}$ and their cytotoxic effect and inhibitory activity on DNA replication are reported herein.

The MeOH extract of the frozen sponge was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by partitioning of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solubles between 90% aqueous MeOH and n hexane. The 90% aqueous MeOH layer was then partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 58.15 g of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer, which was subjected to reversed-phase flash column chromatography to yield eight fractions. In vitro P388 and brine shrimp lethality assays were performed on these fractions. Guided by the in vitro P388 assay, fraction 7 was successively fractionated employing reversed-phase flash column chromatography and HPLC to afford compounds 1 and 2. Compounds 3-5 were obtained after C_{18} flash column chromatography and HPLC of fraction 6, guided by the brine shrimp lethality assay.

Compounds 1-5 displayed a significant activity comparable to that of cisplatin against a panel of human tumor cell lines (Table 1). These polyacetylenes showed rather selective cytotoxicity against a skin cancer cell line (SK-MEL-2). The cytotoxicity of these polyacetylenes may be partly due to their significant inhibition of the DNA replication (Table 2).

Petrotetrayndiol F (1) closely resembled homo-(3S,14S)petrocortyne $\mathrm{A}(6)^{9}$ in its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra except for the absence of the signals corresponding to the two olefinic groups (Δ^{4} and Δ^{44}) (Table 3). Compared to those of homo-(3S,14S)-petrocortyneA, H-4 ($\delta 1.65$), H-5 ($\delta 1.47$), $\mathrm{H}-44$ ($\delta 1.48$), and $\mathrm{H}-45$ ($\delta 2.157$) signals were shifted upfield, indicating that $\mathbf{1}$ is saturated at C-4 and C-44. This interpretation was further supported by the [$\mathrm{M}+\mathrm{Na}]^{+}$ion of $\mathbf{1}$ at $\mathrm{m} / \mathrm{z} 695$ in the FABMS, which was 4 amu higher than that of homo-(3S,14S)-petrocortyne A. The absolute configuration of $\mathbf{1}$ was determined by the modified Mosher's method. Diagnostic ${ }^{1} \mathrm{H}$ NMR chemical shift differences between the MTPA esters [$\delta \Delta=\delta_{\mathrm{S}}-\delta_{\mathrm{R}} ; \mathrm{H}-1(-0.03 \mathrm{ppm})$,

[^0]

H-4 (could not be calcd due to overlap with other signals), $\mathrm{H}-11$ (-0.02 ppm), H-14 (+0.01 ppm)] revealed the absolute stereochemistry at C-3 and C-14 to be R and S, respectively. Although the 4-dehydro, 43-dehydro, and 4,43didehydro analogues have previously been reported from the genus Petrosia, ${ }^{10-13}$ petrotetrayndiol $F(\mathbf{1})$ is unique for having unconjugated acetylenic groups at both termini.

The ${ }^{1}$ H NMR spectrum of dihomo-(3S,14S)-petrocortyne A (2) was superimposable on that of homo-(3S,14S)petrocortyne A (Experimental Section). However, when coeluted in HPLC, $\mathbf{2}$ showed a distinctly longer retention time than that of homo-(3S,14S)-petrocortyne A. In the FABMS, 2 showed the $[\mathrm{M}+\mathrm{Na}]^{+}$ion at $\mathrm{m} / \mathrm{z} 705$, which was 14 amu higher than that of homo-(3S,14S)-petrocortyne A. The gross structure was further confirmed by FABCID tandem mass spectrometry (Figure 1). The fragmentation of $\mathbf{2}$ was similar to that of homo-(3S,14S)-petrocortyne A, except for an additional higher mass fragment (m/z 639), which was due to the allylic cleavage of the terminus. The absolute configuration of $\mathbf{2}$ was determined in the same manner as for petrotetrayndiol F (1). Diagnostic ${ }^{1} \mathrm{H}$ NMR chemical shift differences between the MTPA esters [$\delta \Delta$ $=\delta_{\mathrm{S}}-\delta_{\mathrm{R}} ; \mathrm{H}-1(+0.02 \mathrm{ppm}), \mathrm{H}-4(-0.12 \mathrm{ppm}), \mathrm{H}-5(-0.08$ ppm), H-6 (-0.05 ppm), H-11 (-0.06 ppm), H-14 (+0.01 $\mathrm{ppm})$] revealed the absolute stereochemistry at both C-3 and C-14 to be S.
(3S,14R)-Petrocortyne F (3) was isolated as a colorless oil. (3S,14R)-Petrocortynes G and H (4 and 5) were isolated as a mixture that could not be separated by semiprepara-

Table 1. In Vitro Cytotoxicity of 1-5 against a Panel of Human Solid Tumor Cell Linesa

compound	A549	SK-OV-3	SK-MEL-2	XF498	HCT15
$\mathbf{1}$	3.7	3.8	1.1	4.3	3.4
$\mathbf{2}$	5.2	5.1	1.6	5.8	3.9
$\mathbf{3}$	10.0	1.8	1.3	4.7	4.0
$\mathbf{4 , 5}$	4.0	1.2	0.5	3.5	1.4
cisplatin	0.7	1.3	1.0	0.7	1.1

a Data as expressed in ED 50 values ($\mu \mathrm{g} / \mathrm{mL}$). A549, human lung cancer; SK-OV-3, human ovarian cancer; SK-MEL-2, human skin cancer; XF498, human CNS cancer; HCT15, human colon cancer.

Table 2. Percent Inhibitions of $\mathbf{1 - 5}$ on the SV40 DNA Replication

concentration	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4 , 5}$
$20 \mu \mathrm{M}$	16	21	9	8
$40 \mu \mathrm{M}$	48	38	36	55

Table 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Compound $1\left(\mathrm{CD}_{3} \mathrm{OD}\right)$

position	${ }^{1} \mathrm{H}(600 \mathrm{MHz})$	${ }^{13} \mathrm{C}(75 \mathrm{MHz})$	HMBC
1	2.75 (d, 2.1)	73.3	C-3
2		86.4	
3	4.27 (td, 6.7, 2.0)	62.6	C-1, C-2, C-4, C-5
4	1.65 (m)	39.0	C-2, C-3, C-5, C-6
5	1.47 (m)	26.3	C-3, C-4, C-6
6-9	1.30-1.40 (m)	29.2-30.7	
10	1.50 (m)	29.2-30.7	C-9, C-11
11	2.22 (td, 7.1, 2.0)	$19.2{ }^{\text {a }}$	C-10, C-12, C-13, C-14
12		$84.5{ }^{\text {b }}$	
13		$80.0{ }^{\text {c }}$	
14	5.01 (quint, 2.0)	52.6	C-13, C-15
15		$79.9{ }^{\text {c }}$	
16		$84.4{ }^{\text {b }}$	
17	2.23 (td, 6.8, 1.9)	$19.3{ }^{\text {a }}$	C-14, C-15, C-16, C-18
18	1.50 (m)	29.2-30.7	C-17, C-19, C-20
19	1.30-1.40 (m)	29.2-30.7	
20	2.06 (m)	$27.7{ }^{\text {d }}$	C-19, C-21, C-22
21	5.35-5.39 (m)	$130.6{ }^{\text {e }}$	C-19, C-20, C-23
22	5.35-5.39 (m)	$131.1{ }^{\text {e }}$	C-20, C-23, C-24
23	2.06 (m)	$28.1{ }^{\text {d }}$	C-21, C-22, C-24
24-25	1.38 (m)	29.2-30.7	
26	2.06 (m)	$28.0{ }^{\text {d }}$	C-25, C-27, C-28
27	5.35-5.39 (m)	$131.0^{\text {e }}$	C-25, C-26, C-29
28	5.35-5.39 (m)	$130.8{ }^{\text {e }}$	C-26, C-29, C-30
29	2.06 (m)	$28.0{ }^{\text {d }}$	C-27, C-28, C-30
30	1.38 (m)	29.2-30.7	C-27, C-28, C-29, C-31
31-43	1.30-1.40 (m)	29.2-30.7	
44	1.48 (m)	29.2-30.7	C-43, C-46
45	2.157 (t, 7.1)	19.0	C-44, C-46, C-47
46		$84.5{ }^{\text {b }}$	
47	2.160 (s)	69.3	C-46

${ }^{\text {a-e Assignments with the same superscript in the same column }}$ may be interchanged.
tive ODS and CN HPLC. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 3, 4, and 5 suggested that these compounds have the same gross structure as petrocortynes F, G, and $\mathrm{H},{ }^{10}$ respectively (Experimental Section). Analyses of the HMBC (for 3, 4, and 5), TOCSY (for 3), and FAB-CID tandem mass (for 3, 4, and 5) spectral data further supported this conclusion. The absolute configuration at $\mathrm{C}-3$ and $\mathrm{C}-14$ of $\mathbf{3}, \mathbf{4}$, and 5 was proposed as $3 \mathrm{~S}, 14 \mathrm{R}$, by comparing ${ }^{1} \mathrm{H}$ NMR data of S-MTPA esters with that of (3S,14R)-petrocortyne E, ${ }^{9}$ while the absolute configuration at the third carbinol carbon could not be defined due to overlap of the corresponding signals. Thus it appears that 3-5 differed from petrocortynes $\mathrm{F}-\mathrm{H}^{10}$ by the $\mathrm{C}-3$ absolute stereochemistry. It is interesting to note that the analogous linear polyacetylenes from Petrosia sp. revealed mixed stereochemistries of each allylic secondary al cohol, ${ }^{3,7-10,13}$ possibly due to a racemization either in the animal or subsequently in the process of storage, isolation, or derivatization.

Experimental Section

General Experimental Procedures. Optical rotations were measured in MeOH on a J ASCO DIP-370 digital polarimeter. UV spectra were obtained in MeOH using a UV-2401 PC Shimadzu spectrophotometer. IR spectra were recorded on a J ASCO FT/IR-410 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DMX600, Varian Unity Plus 300, and Inova 500 instruments. Chemical shifts are reported with reference to the respective residual solvent peaks ($\delta_{\mathrm{H}} 3.30$ and $\delta_{\mathrm{C}} 49.0$ for $\mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}} 7.26$ for CDCl_{3}). FAB-CID tandem MS data were obtained using a JEOL JMS-HX110/110A. HPLC was performed with a YMC ODS-H80 (semipreparative, $250 \times 10 \mathrm{~mm}$ i.d., $4 \mu \mathrm{~m}, 80 \AA$; preparative, $250 \times 20 \mathrm{~mm}$ i.d., $4 \mu \mathrm{~m}, 80 \AA$) and YMC-Pack CN ($250 \times 10 \mathrm{~mm}$ i.d., $5 \mu \mathrm{~m}, 120$ Å) col umn using a Shodex RI-71 detector.

Animal Material. The sponge Petrosia sp. was collected in J uly 1995 (15-25 m depth), off Komun Island, K orea (see ref 7 for description of the sponge material). A voucher specimen (J 95K-11) was deposited in the Natural History Museum, Hannam University, Taejon, K orea.

Extraction and Isolation. The frozen sponge (14.5 kg) was extracted with MeOH at room temperature. The MeOH solubles were partitioned as described in our previous report. ${ }^{8}$ Fraction $7(7 \mathrm{~g})$ was active in the P388 assay (ED $504.7 \mu \mathrm{~g} /$ mL , doxorubicin $4.0 \mu \mathrm{~g} / \mathrm{mL}$), and fraction $6(4.5 \mathrm{~g})$ was active in the brine shrimp lethality assay ($\mathrm{LD}_{50}<7.3 \mu \mathrm{~g} / \mathrm{mL}$). Guided by the P388 assay, fraction 7 was further separated by reversed-phase flash column chromatography (YMC Gel ODSA, $60 \AA 500 / 400$ mesh), eluting with $10 \rightarrow 0 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$, ethyl acetate, and CHCl_{3} to afford 13 fractions. Fraction 7-9 (762.1 $\mathrm{mg}, \mathrm{ED}_{50} 3.7 \mu \mathrm{~g} / \mathrm{mL}$, doxorubicin $2.0 \mu \mathrm{~g} / \mathrm{mL}$), eluted with MeOH , was separated on preparative ODS HPLC eluting with $100 \% \mathrm{MeOH}$ to afford fraction 7-9-7 (25.6 mg). Fraction 7-9-7 yiel ded compounds $\mathbf{1}(2.5 \mathrm{mg})$ and $\mathbf{2}(7.2 \mathrm{mg})$ by purification on semi preparative ODS HPLC eluting with $49.3 \% \mathrm{MeOH} /$ MeCN. Fraction 6 was further subjected to reversed-phase flash column chromatography (YMC Gel ODS-A, $120 \AA 230$ mesh), eluting with the solvent system $17 \rightarrow 0 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$, 17% and $50 \% \mathrm{MeOH} / \mathrm{EtOAc}, \mathrm{EtOAc}$, and acetone to afford 12 fractions. Fraction $6-6\left(760.0 \mathrm{mg}, \mathrm{LD}_{50} 1.4 \mu \mathrm{~g} / \mathrm{mL}\right)$, which eluted at $4 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$, was separated by preparative ODS HPLC eluting with $2 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ to afford fraction 6-6-12 $(64.2 \mathrm{mg})$ and fraction 6-6-7 (35.0 mg). Separation of fraction $6-6-12$ by preparative ODS HPLC eluting with $5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ afforded compound $\mathbf{3}(2.4 \mathrm{mg})$, which was further purified by CN HPLC eluting with $40 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$. Fraction $6-6-7$ was purified by CN HPLC eluting with $40 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ to afford compounds 4 and $5(5.3 \mathrm{mg})$ as a mixture.
Petrotetrayndiol \mathbf{F} (1): yellow oil; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 3; LRFABMS m/z $695[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{O}_{2} \mathrm{Na}\right)$.
Dihomo-(3S,14S)-petrocortyne A (2): yellow oil; $[\alpha]^{23}{ }_{\mathrm{D}}$ $+10^{\circ}$ (c 1.0, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 223$ (3.9) nm; IR (film) $v_{\text {max }} 3297,2925,2853,1452,995 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR data, (CD $\left.{ }_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 5.99(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.7,7.3, \mathrm{H}-45), 5.85$ ($1 \mathrm{H}, \mathrm{dtd}, \mathrm{J}=15.1,6.8,1.5, \mathrm{H}-5$), $5.54(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15.1,6.3$, $1.5, \mathrm{H}-4), 5.44(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=10.7, \mathrm{H}-46), 5.33-5.37(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-21,22,27,28), 5.01(1 \mathrm{H}$, quint, J $=2.0, \mathrm{H}-14), 4.74(1 \mathrm{H}$, brd, J = 6.3, H-3), $3.39(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=2.0, \mathrm{H}-48), 2.86(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2.0, \mathrm{H}-1), 2.31(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.3, \mathrm{H}-44), 2.21(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$, 17), 2.06 (10H, m, H-6, 20, 23, 26, 29), 1.29-1.50 (44H, m, H-7-10, 18, 19, 24, 25, 30-43); LRFABMS m/z 705 [M + Na] ${ }^{+}$ $\left(\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{2} \mathrm{Na}\right)$.
(3S,14R)-Petrocortyne F (3): colorless oil; ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 5.99$ ($1 \mathrm{H}, \mathrm{dtd}, \mathrm{J}=11.0,7.5,1.0, \mathrm{H}-43$), $5.84(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J}=15.5,6.5,1.0, \mathrm{H}-5), 5.59(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.5$, $7.0, \mathrm{H}-20), 5.55(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=15.5,6.0,1.5, \mathrm{H}-4), 5.46$ ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=15.5,7.0, \mathrm{H}-21$), 5.44 (1H, ddt, J = 11.0, 2.0, 1.5, H-44), $5.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-27,28), 5.01(1 \mathrm{H}$, quint, J $=2.0, \mathrm{H}-14), 4.73$ ($1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=6.5, \mathrm{H}-3$), $3.96(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0, \mathrm{H}-22), 3.40(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.0, \mathrm{H}-46), 2.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0, \mathrm{H}-1), 2.31(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ 7.0, H-42), 2.23 (2H, td, J = 7.0, 2.0, H-17), 2.21 (2H, td, J = 7.0, 2.0, H-11), 2.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$), 2.03 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6,26,29$), 1.59 (2H, m, H-18), 1.50 (4H, m, H-10, 23), 1.41 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$,

Figure 1. Key FAB-CID MS/MS fragmentations of the $[\mathrm{M}+\mathrm{Na}]^{+}$of $\mathbf{1}$ and $\mathbf{2}$. The \% relative abundance is given in parentheses.

24, 41), 1.29 (28H , m, H-8-9, 25, 30-40); ${ }^{13} \mathrm{C}$ NMR data (CD 3^{-} OD, 75 MHz) $\delta 146.4$ (C-43), 135.4 (C-20), 134.1 (C-5), 131.3 (C-4/21/27/28), 131.0 (C-4/21/27/28), 130.72 (C-4/21/27/28), 130.69 (C-4/21/27/28), 109.3 (C-44), 84.7 (C-2/12/16), 84.6 (C2/12/16), 79.8 (C-13, 15), 74.6(C-1), 73.7 (C-22), 63.2 (C-3), 52.6 (C-14), 38.3 (C-23), 32.9 (C-6), 32.2 (C-19), 31.1 (C-42), 29.230.8 (C-7-10, 18, 24, 25, 30-41), 28.2 (C-26, 29), 19.3 (C-11, 17), (signals of C-45 and C-46 were not detected); selected TOCSY data, H-20 (H-17), H-22 (H-26); selected HMBC data, H-10 (C-17, C-21); key ${ }^{1} \mathrm{H}$ NMR data of (S)-MTPA ester of 3 $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right), 5.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=16.0,7.5, \mathrm{H}-5), 5.48(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=16.0,7.0, \mathrm{H}-4), 2.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0, \mathrm{H}-1), 2.20(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=8.0, \mathrm{H}-17), 2.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0, \mathrm{H}-11)$; LRFABMS m/z 693 [$\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{O}_{3} \mathrm{Na}\right) ;$ FAB-CID tandem MS m/z 693 [M + $\mathrm{Na]}^{+}(1.3), 627$ (1.1), 613 (0.3), 599 (0.4), 585 (0.3), 571 (0.4), 557 (0.4), 543 (0.4), 529 (0.3), 515 (0.2), 501 (0.2), 487 (0.2), 473 (0.4), 459 (0.3), 405 (0.5), 293 (0.5).
(3S,14R)-Petrocortyne G and (3S,14R)-petrocortyne H (4 and 5): colorless oil; ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta$ $5.99(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.8,7.8, \mathrm{H}-43), 5.85(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J}=16.5,6.3$, $0.9, \mathrm{H}-5), 5.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-29$ of $4 / \mathrm{H}-26$ of 5$), 5.55(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=$ 16.5, 6.3, 1.5, H-4), 5.40-5.46 (2H , m, H-44, H-28 of 4/H-27 of 5), $5.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-21,22), 5.01(1 \mathrm{H}$, quint, J $=2.1, \mathrm{H}-14)$, $4.74(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=6.3, \mathrm{H}-3), 3.95(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.3, \mathrm{H}-27$ of $4 / \mathrm{H}-$ 28 of 5), $3.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4, \mathrm{H}-46), 2.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1, \mathrm{H}-1)$, 2.31 (2H, q, J = 7.2, H-42), 2.22 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-11,17$), 2.06 (8 H , $\mathrm{m}, \mathrm{H}-6,20,23, \mathrm{H}-30$ of $4 / \mathrm{H}-25$ of 5), 1.20-1.57 (40H , m, H-710, 18, 19, 24, 31-41, H-25, 26 of $4 / \mathrm{H}-29,30$ of 5); ${ }^{13} \mathrm{C}$ NMR data ($\left.\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 146.41$ (C-43), 146.39 (C-43), 134.8 (C-29 of 4/C-26 of 5), 134.5 (C-29 of 4/C-26 of 5), 134.1 (C-5), 132.6 (C-28 of 4/C-27 of 5), 132.2 (C-28 of 4/C-27 of 5), 131.1 (C-4/21/22), 130.8 (C-4/21/22), 130.7 (C-4/21/22), 130.6 (C-4/ 21/22), 109.3 (C-44), 84.5 (C-2/12/16), 84.3 (C-2/12/16), 82.7 (C46), 79.9 (C-13/15), 79.8 (C-13/15), 74.6(C-1), 73.8 (C-27 of 4, C-28 of 5), 63.1 (C-3), 52.6 (C-14), 38.5 (C-26 of 4/C-29 of 5), 38.3 (C-26 of 4/C-29 of 5), 33.3 (C-30 of 4/C-25 of 5), 32.9 (C6), 32.8 (C-30 of 4/C-25 of 5), 31.1 (C-42), 29.2-30.8 (C-7-10, 18, 19, 24, 31-41, C-25 of 4, C-30 of 5), 28.2 (C-20/23), 27.8 (C-20/23), 27.7 (C-20/23), 27.6 (C-20/23), 19.3 (C-11/17), 19.2 (C-11/17) (signal of C-45 was not detected); selected HMBC data, C-17 (H-20), C-25 (H-23 of 5); key ${ }^{1} \mathrm{H}$ NMR data of (S)MTPA ester of 4 and $5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right), 5.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $15.5,6.5, \mathrm{H}-5), 5.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,6.5, \mathrm{H}-4), 2.62(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2.0, \mathrm{H}-1), 2.18(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{H}-17), 2.17(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$, H-11); LRFABMS m/z 693 [$\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{O}_{3} \mathrm{Na}\right)$; FAB-CID tandem MS m/z 693 [M + Na] ${ }^{+}$(1.3), 627 (1.1), 613 (0.3), 599 (0.4), 585 (0.3), 571 (0.4), 557 (0.4), 543 (0.4), 529 (0.3), 515 (0.2), 501 (0.2), 487 (0.2), 473 (0.4), 459 (0.3), 405 (0.5), 293 (0.5).

Preparation of MTPA Ester. The (R)-MTPA or (S)-MTPA esters of 1-5 were prepared as described previously. ${ }^{8}$ To solutions of $\mathbf{1 - 5}$ in dry pyridine ($20 \mu \mathrm{~L}$) were added four times the molar excess of (R)-(-)- or (S)-(+)- α-methoxy- α-trifluoromethylphenylacetyl chloride (paying attention to the fact that (R)-MTPA-CI gives (S)-MTPA ester and vice versa). Each mixture was allowed to stand at room temperature for 16 h , and an equimolar amount of 3-(dimethylamino)propylamine
was added. After standing for 10 min , the solvent was evaporated. The residue was purified on silica gel in a Pasteur pipet eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and characterized by ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

In Vitro SV40 DNA Replication. The reaction mixtures $(40 \mu \mathrm{~L}$) included 40 mM creatine phosphate-di-Tris salt (pH 7.7), $1 \mu \mathrm{~g}$ of creatine kinase, $7 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ DTT, 4 mM ATP, $200 \mu \mathrm{M}$ UTP, GTP, and CTP, $100 \mu \mathrm{M}$ dATP, dGTP, and dCTP, $25 \mu \mathrm{M}\left[{ }^{3} \mathrm{H}\right] \mathrm{dTTP}(300 \mathrm{cpm} / \mathrm{pmol}), 0.6 \mu \mathrm{~g}$ of SV40 T-Ag, $0.3 \mu \mathrm{~g}$ of SV40 origin-containing DNA (pUC), and the indicated amounts of replication proteins. The reactions were performed for 90 min at $37{ }^{\circ} \mathrm{C}$, after which the acid-insoluble radioactivity was measured. Replication products were analyzed using [α - ${ }^{32} \mathrm{P}$] dATP ($30,000 \mathrm{cpm} / \mathrm{pmol}$) instead of [${ }^{3} \mathrm{H}$] dTTP in the reactions just described. After incubation, the reactions were stopped by addition of $40 \mu \mathrm{~L}$ of a solution containing 20 mM EDTA, 1% sodium dodecyl sulfate, and E . col i tRNA ($0.5 \mathrm{mg} / \mathrm{mL}$). One-tenth of the reaction mixture was used to measure the acid-insoluble radioactivity. DNA was isol ated and electrophoretically separated on a 1.0\% agarose gel for $12-14 \mathrm{~h}$ at $2 \mathrm{~V} / \mathrm{cm}$. The gel was subsequently dried and exposed to X-ray film.

Acknowledgment. The authors gratefully acknowledge Dr. C. J. Sim for the identification of the sponge. Our thanks are due to J oon Hee Park, Hyun Soo Kim, and Kyu Sik Choi for their technical assistance in the extractions and collection of the marine sponge. The 600 MHz NMR spectra were provided by the Research Equipment Share Program of the K orea Basic Science Institute. This study was supported by a grant from the Ministry of Health and Welfare.

References and Notes

(1) Guo, Y.; Gavagnin, M.; Salierno, C.; Cimino, G. J. Nat. Prod. 1998, 61, 333-337.
(2) Li, H.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1994, 57, 14641467.
(3) Ochi, M.; Ariki, S.; Tatsukawa, A.; Kotsuki, H.; Fukuyama, Y.; Shibata, K. Chem. Lett. 1994, 89-92.
(4) Fusetani, N.; Li, H.; Tamura, K.; Matsunaga, S. Tetrahedron 1993, 49, 1203-1210.
(5) Issacs, S.; Kashman, Y.; Loya, S.; Hizi, A.; Loya, Y. Tetrahedron 1993, 49, 10435-10438.
(6) Cimino, G.; De Giulio, A.; De Rosa, S.; Di Marzo, V. J . Nat. Prod. 1990, 53, 345-353.
(7) Kim, J. S.; Im, K. S.; J ung, J. H.; Kim, Y.-L.; Kim, J.; Sim, C. J .; Lee, C.-O. Tetrahedron 1998, 54, 3151-3158.
(8) Kim, J. S.; Lim, Y. J.; Im, K. S.; J ung, J. H.; Sim, C. J.; Lee, C.-O.; Hong, J .; Lee, H. J . Nat. Prod. 1999, 62, 554-559.
(9) Lim, Y. J.; Park, H. S.; Im, K. S.; Lee, C.-O.; Hong, J.; Lee, M.-Y.; Kim, D.-K.; J ung, J. H. J . Nat. Prod. 2001, 64, 46-53.
(10) Shin, J.; Seo, Y.; Cho, K. W. J. Nat. Prod. 1998, 61, 1268-1273.
(11) Guo, Y.; Gavagnin, M.; Salierno, C.; Cimino, G. J . Nat. Prod. 1998, 61, 333-337.
(12) Guo, Y.; Gavagnin, M.; Trivellone, E.; Cimino, G. J . Nat. Prod. 1995, 58, 712-722.
(13) Seo, Y.; Cho, K. W.; Rho, J.-R.; Shin, J. Tetrahedron 1998, 54, 447-462.
NP010247P

[^0]: * To whom correspondence should be addressed. Tel: 82-51-510-2803 Fax: 82-51-510-2803. E-mail: jhjung@pusan.ac.kr.
 ${ }^{\dagger}$ Pusan National University.
 \ddagger K orea Research Institute of Chemical Technology.
 ${ }^{\S}$ K orea Basic Science Institute.
 ${ }^{\perp}$ Inje University.

